Quantum Groups and their Applications in Physics
Editors
Publication date
# of pages
652Cover
HardcoverISBN print
978-90-5199-247-2ISBN online
978-1-61499-213-4Subjects

Description
This book focuses on quantum groups, i.e., continuous deformations of Lie groups, and their applications in physics. These algebraic structures have been studied in the last decade by a growing number of mathematicians and physicists, and are found to underlie many physical systems of interest. They do provide, in fact, a sort of common algebraic ground for seemingly very different physical problems. As it has happened for supersymmetry, the q-group symmetries are bound to play a vital role in physics, even in fundamental theories like gauge theory or gravity. In fact q-symmetry can be considered itself as a generalization of supersymmetry, evident in the q-commutator formulation. The hope that field theories on q-groups are naturally reguralized begins to appear founded, and opens new perspectives for quantum gravity. The topics covered in this book include: conformal field theories and quantum groups, gauge theories of quantum groups, anyons, differential calculus on quantum groups and non-commutative geometry, poisson algebras, 2-dimensional statistical models, (2+1) quantum gravity, quantum groups and lattice physics, inhomogeneous q-groups, q-Poincaregroup and deformed gravity and gauging of W-algebras.
Abstracted / Indexed in

